12 research outputs found

    Scanning X-ray nanodiffraction from ferroelectric domains in strained K0.75Na0.25NbO3 epitaxial films grown on (110) TbScO3

    Get PDF
    Scanning X-ray nanodiffraction on a highly periodic ferroelectric domain pattern of a strained K0.75Na0.25NbO3 epitaxial layer has been performed by using a focused X-ray beam of about 100 14;nm probe size. A 90°-rotated domain variant which is aligned along [1 2]TSO has been found in addition to the predominant domain variant where the domains are aligned along the [12]TSO direction of the underlying (110) TbScO3 (TSO) orthorhombic substrate. Owing to the larger elastic strain energy density, the 90°-rotated domains appear with significantly reduced probability. Furthermore, the 90°-rotated variant shows a larger vertical lattice spacing than the 0°-rotated domain variant. Calculations based on linear elasticity theory substantiate that this difference is caused by the elastic anisotropy of the K0.75Na0.25NbO3 epitaxial layer

    X-ray scattering study of GaN nanowires grown on Ti/Al2_{2}O3_{3} by molecular beam epitaxy

    Full text link
    GaN nanowires (NWs) grown by molecular beam epitaxy on Ti films sputtered on Al2_{2}O3_{3} are studied by X-ray diffraction (XRD) and grazing incidence small-angle X-ray scattering (GISAXS). XRD, performed both in symmetric Bragg reflection and at grazing incidence, reveals Ti, Ti3_{3}O, Ti3_{3}Al, and TiOx_xNy_y crystallites with in-plane and out-of-plane lattice parameters intermediate between those of Al2_{2}O3_{3} and GaN. These topotaxial crystallites in Ti film, formed due to interfacial reactions and N exposure, possess fairly little misorientation with respect to Al2_{2}O3_{3}. As a result, GaN NWs grow on the top TiN layer possessing a high degree of epitaxial orientation with respect to the substrate. The measured GISAXS intensity distributions are modeled by the Monte Carlo method taking into account the orientational distributions of NWs, a variety of their cross-sectional shapes and sizes, and roughness of their side facets. The cross-sectional size distributions of the NWs and the relative fractions of (11ˉ00)(1\bar{1}00) and (112ˉ0)(11\bar{2}0) side facets are determined

    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals

    Get PDF
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films
    corecore